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ABSTRACT

Evolutionary Algorithms have been combined with Deep Rein-
forcement Learning (DRL) to address the limitations of the two
approaches while leveraging their benefits. In this paper, we discuss
objective-informed mutations to bias the evolutionary population
toward exploring the desired objective. We focus on Safe DRL do-
mains to show how these mutations exploit visited unsafe states
to search for safer actions. Empirical evidence on a 12 degrees of
freedom locomotion benchmark and a practical navigation task,
confirm that we improve the safety of the policy while maintaining
comparable return with the original DRL algorithm.
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1 INTRODUCTION

In the physical world, evolution and learning cooperate to assimilate
the benefits of both solutions [36], while addressing their limita-
tions. A recent research field takes inspiration from this natural
phenomenon, proposing the combination of Deep Reinforcement
Learning (DRL) [39] and Evolutionary Algorithms (EAs) [11].
DRL is well-known for solving complex decision-making prob-
lems where agents interact with an environment in a trial and
errors fashion to maximize a long-term objective called return. In
particular, DRL achieved astonishing progress in a wide variety of
domains, ranging from robotics [12, 31] to games [28, 35]. However,
despite the successes, this trial and error learning paradigm suffers
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from several issues in practical applications, where exploration and
safety are two key aspects. For example, DRL suffers from prema-
ture convergence to local optima, which is mainly caused by the
lack of diverse exploration when operating in high-dimensional
spaces [13]. Conversely, the redundancy of population-based EAs
has the advantage of enabling diverse exploration, leading to a more
stable convergence. For this reason, EAs have been employed as a
gradient-free optimization alternative to DRL. Genetic Algorithms
(GAs) [29], in particular, achieved competitive results compared
to gradient-based DRL [38] without involving computational de-
manding gradient computations. However, the lack of gradient
information causes poor generalization skills, and GAs are thus
significantly less sample efficient than gradient-based DRL.

Hence, an emergent research field proposed the combination
of gradient-free population-based approaches and gradient-based
solutions [4, 6, 15, 16, 21, 24, 32]. While the specific combination
strategy may vary among these recent algorithms, the general idea
is to have an evolutionary population that interacts with indepen-
dent copies of the environment, producing diverse trajectories. The
combined frameworks that focus on the evolutionary component
[4, 15, 16], thus select the best individuals using a fitness metric,
and then generate a new population by applying crossover and
mutation operators. In this context, a DRL agent that is trained in
parallel is periodically injected into the population to transfer its
gradient-based knowledge. In contrast, the approaches that focus
on the gradient-based component [21, 24] use the population to
favor exploration and diversity, and the evolutionary information
is transferred back to the DRL agent using soft updates [34].

Due to our interest in practical applications, in this paper we
focus on the latter frameworks, to highlight the importance of the
safety aspect for the gradient-based agent. In more detail, we con-
sider problems where unsafe behaviors are specified with an auxil-
iary cost signal that is separate from the task objective [33]. Hence,
our goal is to bias policies toward safety without constrained opti-
mization, which is typical of recent DRL algorithms that are used
due to the intuitive way of constraints (on the cost) to encode safety
criteria [1, 20, 37]. To this end, we extend naive gradient-based mu-
tations [17] to bias current policies to explore safer behaviors. Our
safe mutations exploit the visited unsafe states (according to the
cost) to approximate the per-weight sensitivity of the actions over
such undesired situations. Then, such sensitivity is used to compute
safety-informed perturbations that locally bias the agent policy to
explore different actions in the proximity of the unsafe states. In
the context of combined approaches, we periodically generate an
evolutionary population from the DRL policy using the safe muta-
tions. Therefore, the individuals are evaluated independently over
a set of trials to select the individual with a comparable return to
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the DRL agent and a lower cost. The parameters of this individual
then replace the ones of the DRL agent [21].

We show the performance of our safe mutations in two scenarios:
(i) a complex locomotion task of the recent Safety Gym benchmarks
[33], (ii) a practical navigation scenario based on a Turtlebot3 robot
[25, 27].1 We compare over the baseline PPO [10] and constrained
DRL (Lagrangian PPO [37], Constrained Policy Optimization (CPO)
[1], Interior Point Optimization (IPO) [20]) as the latter is the most
closely related work that employs cost functions to characterize
safety. Our empirical evaluation analyzes the return and cost trade-
off, confirming a successful exchange of information between the
evolutionary part and the gradient-based agent. In particular, we
achieve comparable or superior performance across the considered
tasks.

2 PRELIMINARIES

In this section, we briefly discuss the main ideas of previous con-
strained DRL approaches and naive gradient-based mutations.

2.1 Constrained Deep Reinforcement Learning

A CMDP [2] is a Markov Decision Process with an additional set
of constraints C basedon C; : S X A — R (i € {1,...,k}) cost
functions and h € R¥ thresholds for the constraints. The C;-return
is defined as Jc, () = Err [ 252, Y!Ci(st, a)], where y € (0,1)
is the discount, 7 = (s, ao, ... ) is a trajectory, = = {z(als) : s €
S,a € A} is a policy in state S and action A spaces. Constraint-
satisfying policies I, and optimal policies 7" are thus defined
as:

He={re€Il: Jo,(r) < h;, Vi}, =" =argmax](r)

relle

where J(7) = Ervr[ 272, Y'R(ss, ar)] is the expected discounted
return that we aim at maximizing in a standard MDP; II are the
stationary policies, and R : & X A — R is the reward function.
Without loss of generality, we consider the case of one cost function
(as in recent constrained DRL literature [20, 33, 37]).

2.2 Evolutionary Algorithms

Evolutionary approaches typically evolve a population of p € N
individuals (genomes), represented by parameters (weights) 6; (i €
{1,...,p}). The individuals are evaluated to produce a fitness score
used by the selection operator to choose the best genome. However,
simple Gaussian-based mutations N can lead to disruptive changes
[17] that can be naively address uses zero-mean and low standard
deviation [26]. Otherwise, if we define a genome as a Deep Neural
Network (DNN) parametrized by 0 that represents a function fp :
Dy — Dy (input x € Dy € R" and output y € Dy C R™, with
input/output size n, m), and a vector of states s, we can express the
average divergence of the outputs y as a result of a perturbation §
as:

lf6(s) — fo+5(s)ll,

Is

d(fp,6) =

where fp(s) are the forward propagations of the states through the
DNN. Otherwise, a more flexible way to avoid disruptive mutations

)
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employs a differentiable DNN to approximate d with gradient infor-
mation [17]. In detail, it considers the following first-order Taylor

expansion to model an output y; € y (j € {0,...,|y[}) as a function
of perturbations § over the states s:
yj(fo, ) = fa(s)j +5Vafa(s); @)

In the following section, we discuss how to specialize naive
gradient-based mutations of Equation 2 to explore safer behaviors.

3 METHODS

Our mutation operator extends the SUPE-RL framework [21], and
the general flow of the safe mutation method is presented in Algo-
rithm 1. We first augment the agent training with a cost-buffer B,
which stores all the visited states deemed unsafe according to the
cost. Hence, the training process proceeds as follows:

e Periodically, we sample a batch b from B, to compute the
per-weight safety-informed sensitivity A of the agent outputs
over its weights 6,. This is used to generate a population of
n individuals P = {p1,...,pn} U {pa} with weights 0p (p,
is a copy of the agent), voted to explore for safer behaviors.

e P is evaluated in a set of epochs to collect the individuals
average reward Ry, and cost Cp that define the fitness score
P-fitness = (Rp, Cp) Vp € P

e Such fitness is used to select the best individual, i.e., the one
with greater or equal reward with respect to the copy of
the DRL agent, and lower cost. By choosing an appropriate
number of evaluation epochs for the population, we assume
the best individual to be safer than p, as it has higher (or
equal) rewards and lower (or equal) cost.

3.1 Safety-Informed Mutations

Gradient information can be used to design mutations that avoid
detrimental behaviors, normalizing the perturbation by a per-weight
measure of sensitivity [17].

We leverage the cost function to avoid disruptive changes to the
policy while biasing it to safety. In detail, we consider a baseline
Gaussian noise G ~ N (0, mut,) for the perturbations and normal-
ize it with our safety-informed sensitivity A. The resultant muta-
tions dsps are applied to the agent weights 6, to generate £. One
way to compute A considers the gradient of the actual divergence
(Equation 1) [17]:

Vo,d(fo,,G) ~ Vg,d(fo,.0) + Hg,(d(fo,. 0)G
Afp, = abs(Vo,d(fp,. G))

however, the Hessian Hg  of divergence with respect to 0, requires
second-order approximations, and therefore it is computationally
demanding. In contrast, we rely on the per-weight magnitude of
the gradient of the outputs y = f_ (b), where b is a batch of unsafe
states randomly sampled from B, to estimate the sensitivity A to
that weight with a first-order approximation:

- (Zsabs(voafea(S)) 1

. 5] ] “

dsm(fo,) = T

foa
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where each unsafe experience equally contributes to A to reduce
the overall changes to the policy. In practice, we note that using a
threshold A to limit the mutation rescaling (i.e., the hyper-parameter
Amax) leads to better performance. To summarize, our idea is to
design safety-oriented gradient information using visited unsafe
states to bias the policy to explore different actions in the proximity
of such situations.

Algorithm 1 Safety-Informed Mutations

Input:
e a DRL agent with weights 0,
o a cost-buffer B, for the unsafe samples
e scale mut, for the Gaussian G and threshold A;;,qx
: b « Sample an unsafe batch from B,
: Compute G — N (0, mut,) V weight € 0, Vp € P
: A « Equation 4 using b, replacing values < Apqx With Apax
: 0p<—6p+% VpeP

BwW N

4 EXPERIMENTS

The following data are collected on an RTX 2070, using the hyper-
parameters of the original authors’ implementations for the base-
lines, and ten independent runs with different seeds. In particular,
we report the Pareto frontier of average cost (x-axis) versus average
reward (y-axis) at convergence. We compare the baseline PPO, and
three constrained DRL algorithms: L-PPO [37], IPO [20], CPO [1]
as they are the most closely related work to the idea of addressing
safety using a cost function.

4.1 Experiments on SafetyGym

We initially evaluate the safe mutation operator on a complex loco-
motion task of the SafetyGym suite, namely DoggoGoall [33]. In
this problem, a simulated Doggo robot with 12 degrees of freedom
has to learn locomotion behaviors to reach random targets in the
environment while avoiding obstacles that trigger a positive cost
signal upon collision.

Figure 1 shows the results of a SUPE-RL implementation of
PPO with our safe mutation operator, namely SM-PPO. In this
environment, we note that L-PPO maintains the imposed cost limit
but fails at learning the locomotion of the complex 12-joint robot.
In contrast, the baseline PPO does not consider the cost signal,
achieving significant performance in terms of reward, but failing
at reducing the cost. Finally, our approach achieves comparable
rewards over CPO and IPO but significantly reduces the cost value.

4.2 Experiments on Robotic Navigation

Given our interest in practical applications and the importance
of safety in these contexts, we discuss and report the results of a
realistic robotic mapless navigation task. The setup is straightfor-
ward and widely adopted in the field of DRL for mapless navigation
[18, 23].

Figure 2 on the left shows the simulation environment, where a
TurtleBot3 has to learn how to navigate in an indoor environment
with obstacles to reach random targets, using only local observa-
tions (e.g., laser scans). The reward has a dense component during
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Figure 1: Pareto frontier at convergence of PPO, SM-PPO, IPO,
CPO, L-PPO in DoggoGoal1l.
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Figure 2: Comparison in our robotic mapless navigation task.
(Left) Overview of the environment, where obstacles and
walls are depicted in blue and the Turtlebot3 goal in red.
(Right) Pareto frontier of average reward versus average cost
at convergence of PPO, SM-PPO, IPO, CPO, L-PPO.

the trajectory: (d;—1 — d;), where d;_1, d; indicates the Euclidean
distance between the robot and the goal at two consecutive time
steps, and the cost function is simply triggered upon collision with
an obstacle Similar to the Doggo scenario, Figure 2 on the right
reports the Pareto frontier. Crucially, it significantly improves (up
and to the left) with SM-PPO further confirming the benefits of
the safe mutation operator. In the same fashion, the baseline PPO
does not integrate the cost in the optimization and presents both a
higher reward and cost (i.e., unsafer behaviors).

5 RELATED WORK

Safety critics [3, 40] rely on estimating the probability of incur-
ring into unsafe states, given a state-action pair. However, such
approaches could return misleading information for policy improve-
ment, and each step has to compute different samples (e.g., the
action, the probability of failure), which can hinder their applica-
tion to the physical hardware that requires high-frequency control.
Previous work also consider Formal Verification [8, 19] approaches
to inject safety specifications [9, 22], but the focus of this work is to
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show that the only Safety-Informed Mutation operator is sufficient
to bias the policies toward safer regions.

We compared our framework with constrained DRL as it is
more related to our approach. In more detail, CPO [1] has near-
constrained satisfaction guarantees, but the Taylor approxima-
tions lead to inverting a Fisher matrix, possibly resulting in in-
feasible updates and demanding recovery steps. Lyapunov-based
algorithms [5], combine a projection step with action-layer inter-
ventions. However, the cardinality of Lyapunov constraints equals
the number of states, resulting in a non-negligible implementation
cost. Lagrangian methods [33, 37] reduce the complexity of prior
approaches, by transforming the following constrained objective:
miny f(x) s.t. ¢g(x) =0 into an unconstrained one using the La-
grange multiplier (or penalty) [, that form the Lagrangian: £(x, 1) =
f(x)+13g(x). In particular, these Lagrangian-based DRL algorithms
represent a well-known constrained baseline due to their simplicity
and good cost-limit satisfaction [33, 37]. Similarly, IPO [20] reduces
the constrained problem into an unconstrained one by augmenting
the objective with logarithmic barrier functions, which provide
sub-optimal solutions.

However, constraints naturally limit exploration, causing get-
ting stuck in local optima or failing to learn properly [7, 14, 30]. In
contrast, we leverage EAs to design the safe mutation operator as
prior combinations of DRL and EAs show a beneficial transfer of
information between the two approaches [15, 16, 21]. These meth-
ods, however, use the evolutionary component only for improving
the return and can not be trivially extended to address the safety
component.

6 DISCUSSION

In this paper, we propose a safe mutation operator to enhance
previous combinations of EAs and DRL. In detail, our operator
proposes the design of an informed mutation strategy that preserves
the policy behaviors while biasing exploration towards the desired
objective (e.g., safety).

Our results in a Safety Gym benchmark and a practical robotic
navigation task, confirm that we successfully address the trade-off
between return and cost, achieving comparable returns to uncon-
strained algorithms and comparable cost values to constrained
DRL.

The proposed objective-informed operator has several potential
impacts on society as it addresses safety, a crucial aspect of prac-
tical DRL applications. In particular, we show that it is possible
to augment exploration toward the desired objective and success-
fully transfer beneficial information into a DRL agent, which opens
interesting opportunities for future research on multi-objective
optimization.
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