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Abstract— Our goal is to investigate whether discrete state
space algorithms are a viable solution to continuous alternatives
for mapless navigation. To this end we present an approach
based on Double Deep Q-Network and employ parallel asyn-
chronous training and a multi-batch Priority Experience Replay
to reduce the training time. Experiments show that our method
trains faster and outperforms both the continuous Deep De-
terministic Policy Gradient and Proximal Policy Optimization
algorithms. Moreover, we train the models in a custom environ-
ment built on the recent Unity learning toolkit and show that
they can be exported on the TurtleBot3 simulator and to the real
robot without further training. Overall our optimized method
is 40% faster compared to the original discrete algorithm. This
setting significantly reduces the training times with respect to
the continuous algorithms, maintaining a similar level of success
rate hence being a viable alternative for mapless navigation.

I. INTRODUCTION

Since the groundbreaking release of the discrete action
space algorithm Deep Q-Network (DQN) [1], astonishing
results have been achieved applying Deep Reinforcement
Learning (DRL) in a wide variety of fields. From video
games [2] to robotic tasks using mobile robots [3] and
manipulators [4]. The main reason behind the use of DRL
in robotics is the possibility of adapting to the surrounding
environment by generalizing from the training experiences.
However, this has a significant cost in terms of training time
for the network because robotic applications must cope with
the uncertainties of physical hardware (and possibly low-
cost sensors), hence they usually require a huge number of
trials to achieve reasonable performances. For this reason,
reducing training time, while maintaining a good level of
performance, is of paramount importance.

Continuous state space control with DRL: (i) Deep Deter-
ministic Policy Gradient (DDPG) [5] and (ii) Proximal Policy
Optimization (PPO) [6] has been adopted to cope with the
limited capability of Deep Q-Network to deal with physical
control tasks, which are characterized by continuous and high
dimensional action spaces. However, experimental evalua-
tions demonstrate that these algorithms are time-consuming
when compared to discrete action space algorithms (e.g.,
DQN). Given an exhaustive discrete set of actions sufficient
to solve a problem, we show that it is possible to develop
optimized and time-efficient discrete action space algorithms
as a viable alternative to more computationally expensive
solutions based on continuous methods.

In this paper, we focus on the mapless navigation problem,
a well-known benchmark in recent DRL literature [7], [8],
which aims at navigating the robot towards a random target
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using local observation and the target position, without a map
of the surrounding environment or obstacles.

To address this problem we propose an approach based on
Double Deep Q-Network (DDQN) [9] (an improved version
of DQN). Our approach is explicitly designed to reduce the
training phase and, to this end, we introduce an asynchronous
parallel training phase [10] and a Priority Experience Replay
(PER) [11] multi-batch memory management (see Section
IV). We compare DDQN to DDPG and PPO for mapless
navigation and empirically demonstrate that the discrete
action space algorithm (i.e., DDQN) offers a time-efficient
alternative to other continuous methods.

In more detail, we use the TurtleBot31, which is a
widely used platform in several previous work focusing
on robot navigation [7], [12]. Figure 1 shows our problem
architecture and the robotic platform. We consider a sparse
13-dimensional range finder and the target position with
respect to the mobile robot coordinate as input for the
network. Traditional methods such as SLAM (Simultaneous
Localization and Mapping) are based on dense laser range
findings. However, the localization and the local cost-map
prediction heavily depends on precise dense laser sensor.
The laser sensor shipped with the TurtleBot3 is an LDS-
012, which has an update rate of maximum 5Hz. This low
rate causes planning issues using traditional methods (see
Section V) where both the scan values and the localization
of the robot have to be precise.

Another key factor of recent advances in DRL is the
presence of increasingly realistic and complex simulation
environments [13], [14], [15], [16], [17]. Along this line,
Unity3 has recently released a toolkit which enables rapid
prototyping and development of simulation environments. In
this work, we show that it is possible to export a model
trained in our Unity environment, to the Robot Operating
System (ROS) and furthermore, to the real robot (Figure 1).

Our results show that the optimized DDQN algorithm can
be used for mapless navigation as it is able to learn how to
safely drive our platform while generalizing on key aspects of
the task such as the starting and goal positions, the configura-
tion of the obstacles and the velocity of the robot. Crucially
we show that the use of a discrete state space algorithm
(DDQN) with our optimizations, significantly reduces the
training time when compared to state of the art continuous
state space algorithms (DDPG and PPO). Moreover, we show
that our trained model can safely reach targets for obstacle
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configurations that the ROS navigation package movebase4

can not handle.
Summarizing, this paper makes the following contribution

to the state of the art: (i) we show that our configuration of
the mapless navigation problem using a discrete state space
algorithm (DDQN) represents a viable alternative for motion
planning as it maintains a comparable success rate to DDPG
[7] while reducing the training time from 20 hours to less
than one hour. (ii) The asynchronous parallel training phase
and the multi-batch memory management PER, significantly
accelerate the training phase of DDQN, which is ≈ 40%
faster compared to the original algorithm. (iii) We show that
training the model in the Unity environment is significantly
faster than using Gazebo. Crucially, we show that the model
trained in Unity can then be used on Gazebo (using the
ROS framework) and on the real robotic platform without
additional training.

II. RELATED WORK

Deep Reinforcement Learning has been widely applied by
the robotics community, due to its ability to solve complex
tasks both for mobile platforms (e.g., localization [18], coor-
dination [2]) and for manipulators (e.g., trajectory generation
[19]).

The use of Deep Learning approaches for robot navigation
is a well-studied and promising area, however the need of
a large amount of labeled data is a significant limitation
for supervised solutions. To address this limitation, various
approaches [20], [12] aim at exploiting human intervention
to collect data from the deploy environment, in order to
use the policy in a real scenario. However, most of these
methods require image processing techniques and hence are
computationally expensive [21], [22]. Reality gap [23] is also
an important factor to consider when a policy learned in
simulation is transferred to reality. Our neural network input,
based on sparse laser scans and the target position instead
of simulation or real images of the environment, limits the
reality gap problem in our evaluation.

To cope with these problems, DRL has been widely
adopted for robot navigation [24] and [5] proposes Deep
Deterministic Policy Gradients, a DRL approach that can
operate also with continuous state spaces and that uses both
the policy and the value of the Q-function in the learning
process. Recently, other policy-based algorithms, such as
Proximal Policy Optimization [6] has been used in motion
planning [25].

With the release of the continuous state space algorithms,
many works on autonomous navigation exclusively focus on
these approaches [7], [24]. However, a proper discretization
of the action space may be beneficial in various robotic
applications (e.g., trajectory generation for redundant ma-
nipulators) and the use of discrete method can result in a
significantly shorter training time. In contrast to the training
phase of 20 hours in [7], where DDPG was considered, our
discrete approach train the network in less than one hour,

4http://wiki.ros.org/move base

using the environment built in Unity (see Section V for a
detailed analysis).

In this work, we propose a discrete state space algorithm
(based on DDQN) for mapless navigation, using a low-cost
low-dimensional sparse laser range finder. We compare the
performance of this method with the two state of the art
continuous state space algorithms (PPO and DDPG). Our
experimental evaluation shows that it is preferable to use
these discrete approaches when the task does not strictly
require a continuous state space. In this way, it is possible
to obtain similar behaviors (see Section V) in a very limited
amount of training time.

To further reduce training time we implement the consid-
ered algorithms in a parallel asynchronous fashion [10] (see
Section IV), where the experiences and the back-propagation
phase are executed in parallel in multiple instances of the
environment, so to improve the sampling efficiency. Fur-
thermore, we introduce a novel multi-batch [26] memory
management system extending the original PER [11].

III. PROBLEM FORMULATION AND BACKGROUND

We can consider the mapless motion planning problem as
a decision making process.
At time t ∈ [0,T], the robot chooses an action at according
to the state st, it then executes the action, reaching a new
state st+1 and receiving a reward r(st, at). Our goal is to
maximize the total discounted reward from step t onward,
given by Rt =

∑T
i=t γ

i−tr(st, at) with 0 < γ < 1, where
T is the time-step at which the experiment ends and γ is the
discount factor.

a) Double Deep Q-Networks: DQN [1] is a learning
algorithm based on Q-learning and deep neural networks
which for a given state st at time t, estimates the value of the
state-action pair (st, at). Given a policy at = π(st) we can
define Qπ(st, at) = E[Rt|st, at, π] and recursively compute
Qπ(st, at) = E[rt + γQπ(st+1, at+1)|st, at, π] using the
Bellman equation. A deep neural network (parametrized by
θ) estimates the Q-value through Q-learning and the goal is
to minimize the loss function:

Loss(θt) = [rt + γ maxaQ(st+1, a, θt)−Q(st, at, θt)]
2

However, Traditional Deep Q-Network is affected by an
overestimation of Q-values and to handle the problem we can
use two networks when we compute the Q-value, decoupling
the action selection from the target Q value generation [9].

b) Deep Deterministic Policy Gradient: DDPG [5] is
also based on the use of neural networks to estimate the Q-
value for each state and action pair using a critic network
(parametrized by θc) and an actor network (parametrized by
θπ) to estimate optimal actions. This actor-critic architecture
makes it suitable to work with a continuous action space.
The critic network is trained in a similar fashion as DQN;
the actor network is updated with policy gradient by applying
the chain rule:

∇θππ ≈ E[∇θπQ(s, a|θc)|s=st,a=π(st|θπ)] =
E[∇aQ(s, a|θc)|s=st,a=π(st)∇θππ(s|θπ)|s=st ]



Fig. 1. Overall approach schema. All the considered algorithms train the network in the same fashion.

c) Proximal Policy Optimization:: PPO [6] attempts
to control the policy change during learning updates by
replacing the constraint of [27] in the optimization problem
with a penalty term realized by a clipping in the objective
function. In this paper, we consider the PPO implementation
embedded in the Unity toolkit and realized by the authors of
the framework. Further details of the algorithm can be found
in [6].

IV. METHODS

This paper aims to propose a discrete method based
on DDQN the mapless navigation problem, to empirically
demonstrate that discrete Deep Reinforcement Learning can
be a viable, faster alternative to existing continuous tech-
niques. Further improvements to speed-up the training phase
of the DDQN approach are presented: an asynchronous par-
allel training phase based on the one introduced in [7], [10];
ii) a multi-batch memory management system to improve
the original PER [11]. We also exploit a novel toolkit [28]
for the creation of simulation environments, showing: (i)
its performance (i.e., training times) compared to the same
setting in a traditional robotics simulator; (ii) a porting of the
trained models on the official robotic simulator (i.e., Gazebo)
and to the real TurtleBot3.

A. Problem Encoding

Given the specifications of the TurtleBot3, we consider an
angular velocity of max 90 deg/s provided by the output
of our neural networks, and a constant linear velocity. One
computation of the network represents an action that is
directly mapped into the angular velocity of the robot in
the case of discrete algorithms (Figure 2B), or it is used
end-to-end in the case of continuous algorithms. For our
training, a linear velocity = 0.15 m/s is chosen but, given
the capability of generalization of the method, once the
network is trained, it is possible to modify this value to
obtain different behaviors. The decision-making frequency
of the robot is set to 20Hz but, in our evaluation, the DDQN
trained model computes on average ≈ 60 actions/s. This
gives us a margin of improvement to further increase the
control frequency and deal with faster robot or dynamic
obstacles. The laser sensor mounted on the robot is a LDS-
01 and it is used to provide a sparse 13-dimensional scan

values, which are sampled between -90 and 90 degrees
in a fixed angle distribution (Figure 2A). The maximum
update rate of this component is 5Hz and it is given by the
manufacturer. It is important to notice that this frequency
causes localization issues using amcl5 once the trained
model is transferred in Gazebo and on the real robot. We
show that this inaccuracy strongly influences the behavior
of the robot in the testing phase and the continuous models
can not handle this uncertainty, while our discrete method
achieves better performances (see Section V). Previous works
on continuous mapless motion planning [7] does not present
this issue, as they employ superior laser sensors, which have
higher update rate. Moreover, for our experiment, the laser
data does not cover the back of the robot and we assume
that backward movements are not allowed. The target goal
coordinates are randomly chosen in a range of (−3.5, 3.5)
meters (i.e., the size of the training arena in Figure 4D)
and this area is guaranteed to be free (i.e., there are no
obstacles in this area). To analyze the generalization skills
of our models, the configuration of the obstacles is fixed
and compact around the robot initial position (see the map
depicted in Figure 1, left).

B. Network Architecture

All the considered algorithms share the same input layer
structure: 13-sparse laser scans and the target position (a
similar setting is used in [7], [25]); these values are nor-
malized in range (0, 1). The target position is expressed
in polar coordinates, reporting the distance and angle (in
degrees) with respect to our TurtleBot3 agent (Figure 2A).
We did explore other encodings for the problem, increasing
the number of sparse scan range up to 25 and decoupling the
output of the network in two streams to computes different
linear and angular velocities. However, the higher complexity
of the problem causes longer training times but the success
rate was similar. Hence, we preferred a coarse discretization
of the action space to maintain a fast training phases.

To determine the size of the hidden layers, we performed
tests on different network dimensions [29]. In particular, we
performed multiple trials with different random seeds and
network sizes. Figure 2 shows the results of the chosen

5http://wiki.ros.org/amcl



Fig. 2. On top the network structures for DDQN and DDPG (the PPO
has a similar structure). Every layer is represented by type, dimension and
activation function in Keras nomenclature. (A) Represents the input of the
networks. (B) Represents the output layer of the discrete algorithm.

hidden layer and the output layer structure (DDPG and PPO
hidden layers are identical).

Figure 2B shows the output layer actions for the discrete
algorithm. We use 5 nodes to encode the possible angu-
lar velocities for the discrete DDQN ([−90,−45, 0, 45, 90]
deg/s) with a linear activation function. For the continuous
DDPG and PPO a single node with a hyperbolic tangent
activation function is used. This value multiplied by an
hyper-parameter, is used end-to-end as angular velocity in a
range (−90, 90) deg/s. Section V present the experimental
results in terms of: (i) travel distance; (ii) successful attempts;
(iii) training times. It is important to notice that given the
low update rate of the laser sensor, both movebase and the
continuous models can fail in some cases where the discrete
model is able to succeed.

We define a successful attempt as a collision-free trajec-
tory that moves the robot in a position that is less than τ cm
from the target goal, where τ is an user-defined parameter
in the training phase. For our training τ = 15cm . We
discover that models trained with a greater τ (40cm in our
initial setting), in the testing phase tend to perform a correct
trajectory towards the goal, but then they ignore obstacles
that are close to the goal and collide with them in order to
reach the target.

a) Reward function: In order to get consistent results,
the three algorithms share the same reward function rt. There
are three conditions for the reward: two sparse value in
case of reaching the target Rreach or crashing Rfail which
terminates an episode (resetting the robot to its starting
position), and a dense part used during the travel:

rt =


Rfail if crashes or timeout
Rreach if reaches the target
ω(dt−1 − dt) otherwise

(1)

where dt−1, dt indicate the distance between robot and
goal at two consecutive time step and ω is a multiplicative
factor. In our experiments Rreach = 1, Rfail = −1 and
ω = 10. The tuning of ω causes different behaviors of the
robot: (i) setting ω = 15 when the robots perform actions

with angular velocity = 0 we obtain straight movements and
smooth trajectories; (ii) maintaining a constant ω = 10 for
every action, causes a non-smooth path, because unnecessary
actions with angular velocity 6= 0 are selected. The attached
video shows both these robot behaviors.

C. Double Deep Q-Network Extensions

In this section we present our improvements to the orig-
inal methods, to accelerate the training phase of the three
algorithms:

a) Exploration using Gaussian Noise and Target Soft
Update: in the original DDPG implementation [5], the
exploration was managed introducing noise in the last fully
connected layer of the actor network [30] (without the ne-
cessity of tuning the ε decay hyper-parameter for a standard
ε greedy exploration strategy). In addition to this, the target
actor and critic network do not update their values every
u episodes (where u is an user-defined hyper-parameter),
but the update is partially performed at each time step of
the network as explained in [31]. In order to balance the
differences between the original DDPG/PPO and DDQN,
we implemented these two features in our discrete DDQN
algorithm. Figure 3A show the difference in terms of mean
reward between the original DDQN and the optimized ver-
sion, applied to our robotic task.

b) Asynchronous Parallel Learning: We separate the
experience collecting process to another thread which trains
the network [19]. The nature of the Unity engine is to manage
and optimize the efficiency of multiple concurrent game
threads, so we exploited the original asynchronous fashion of
the game engine for the training process. Moreover, we create
multiple independent instances of the training environment
to obtain parallel agents that collect samples simultaneously.
Figure 3B show the effectiveness of the asynchronous paral-
lel DDQN version compared to the original one in a setting
with 1, 2 and 4 parallel environments (the effectiveness
of this approach on continuous state space algorithms was
previously shown in [7], [10]).

c) Memory Management in Priority Experience Replay:
given our mixed reward structure, we use a modified ver-
sion of the PER, introduced by Schaul [11] to accelerate
training times. We modified the original priority system
by introducing three different batches all managed by the
priority system: one for the winning couples (i.e. the ones
with Rreach) of size 5000, one for the losing ones (i.e. the
ones with Rfail) of the same size and one with the other
experiences of size 20000. The final batch of experiences
on which the models are trained is then composed of the
same amount of samples taken from the three batches. With
this implementation, we are able to train the network with a
complete batch of experiences from all the possible behaviors
of the reward function. Figure 3C show the difference in
terms of success rate (i.e., how many targets the robot
reached in the last 100 episodes) between the original PER
and this version, applied to the DDQN algorithm in our
robotic task.



Fig. 3. (A) Average reward for training episode using the standard DDQN, DDPG, and the extended DDQN. (B) Success Rate over the last 100 training
episodes between the standard DDQN (i.e., 1 agent) and the asynchronous parallel version (i.e., 2 and 4 parallel agents). (C) Success Rate over the last
100 training episodes between the standard PER and our implementation with multiple batches.

V. EXPERIMENTAL RESULTS

The training environment (Figure 4D) is built using Unity
and the learning phase exploits its new Python interface to
perform the training of the three algorithms with Keras, a
high-level neural networks API. We transferred the trained
networks both on a reproduction of the same environment in
Gazebo and on the real TurtleBot3, to prove that the model
can be ported without the need of additional training. To
communicate with the Gazebo environment and the robot,
we developed a ROS node, localizing the robot using amcl.
The collected data are related to training phases performed
on a notebook with an Intel Core i7-8550U and a NVIDIA
GeForce MX150, using Adam [32] as optimizer with the
learning rate set to 0.0003.

Our goal is to to provide a configuration of the mapless
navigation problem for the DDQN method, in order to
empirically demonstrate that discrete Deep Reinforcement
Learning can be a viable, faster alternative to existing con-
tinuous algorithms, when the task does not strictly require
physics interactions (e.g., manipulation [19]).

To motivate the usage of the novel Unity toolkit, we
performed the DDQN and DDPG training phase both on
our Unity environment and in the same one built in Gazebo.
Figure 4C report the difference in terms of training time
between the two software. We tested our implementation of
DDQN and DDPG and it is clear that Unity is faster than
Gazebo (the training phase on Unity is ≈ 4 time faster than
the one on Gazebo).

It is important to notice that our results in Figures 3, 4
show the average of three training runs with initial random
seeds. This number of runs is sufficient given that the
deviation between different runs of the same algorithm is
not significant (on average there is a distance of under 9
points in terms of success rate between the best run and the
worst one).

After the training phase, the models were able to learn
to navigate exploiting the minimal information in the input
layer of the network, generalizing: (i) robot starting posi-
tion, (ii) target position, (iii) velocity. The laser scan based
navigation also allows the TurtleBot3 to be able to navigate
in unknown environments with different obstacles, which is
a key feature for motion planning. For each algorithm, we

consider (i) success rate: how many successful obstacles-
free trajectories are performed on a batch of one hundred
episodes. (ii) training times, (iii) path length.

Given the improvement in performance given by our
optimizations described in Section IV, the following results
will consider only training with these optimizations: (i) noisy
exploration and target soft update, (ii) asynchronous parallel
learning and (iii) multi-batch PER.

A. Quantitative results in the Unity simulation environment

In this section, we compare the different performances
obtained by the three algorithms in the Unity environment.
This is important to have a repeatable quantitative evaluation
of the methodology and to prove that discrete state space al-
gorithms can represent a viable alternative in robotics. Figure
4A shows that the discrete DDQN offers better performances
in terms of success rate over the same generation. This
result considers an experiment with τ = 15cm, and the
training stabilizes at over 95% of success rate after about
3000 iterations that correspond to 50 minutes of training.
A crucial evaluation of the viability of discrete algorithms
is presented in Figure 4C, where we show that to reach
similar performance (i.e., 95% of success rate), continuous
algorithms require at least 4 times the training time of
DDQN. We did run experiments using DDPG-discrete with
the discrete setup on the output layer. However, DDPG-
discrete results gave us no improvements in the training
time of DPPG. In the case of a relatively simple motion
planning scenario, the four neural networks used for the
DDPG implementation [5] leads to a very time-consuming
training phase. We also test the two families of algorithm
in the training environment (Figure 4D) and in a testing
environment of size 3.5x10.5m (Figure 4E) that present
obstacles that the robot has never seen (e.g., cylinders). These
figures report the trajectories generated by two exemplary
executions of the trained models aiming at providing a visual
representation of the behaviors for the different models and
are consistent with our evaluations. Given a very similar
behavior of both DDPG and PPO, we show the path of just
one continuous approach. In particular, we see that there is
a very close correspondence of the robot motion in Figure
4D, but the discrete algorithm offers a shorter path (≈ 14m



Fig. 4. (A) Average success rate between DDQN-DDPG-PPO. (B) Porting on the real robot. (C) Training times comparison in both Unity and Gazebo (we
did not re-implement the PPO of the Unity toolkit for the Gazebo evaluation, given the similar behavior with DDPG). (D) Comparison between the traveled
path between DDQN-DDPG in the training environment. (E) Comparison between the traveled path between DDQN-DDPG in the testing environment.

vs ≈ 15.5m) and takes less time (80s vs 125s). Figure 4E,
shows the path of the two algorithms in a new environment.
Here we can see another important aspect of our evaluation,
where the DDPG model fails to reach the second target goal
(even with a training phase that is 4 times longer); this is
caused by the slow update rate of the laser sensor. In our
evaluation, we found that the discretization offered by DDQN
deals better with the lag introduced by the LDS sensor with
respect to DDPG which works in a continuous action space.
Notice that this issue is not related to the learning algorithm
or our network architecture; the movebase motion planner
(which is included in the ROS distribution) also fails for
some obstacle configuration.

B. Transfer on Gazebo and on the real platform

We validate the training performed on the Unity toolkit,
transferring the training models on Gazebo and on a real
TurtleBot3 (Figure 4B). In this simulator and in the real
scenario, we used the manufacturer ROS package to retrieve
the laser sensor values and amcl to localize the robot.
Given the update rate of the TurtleBot3 laser sensor (i.e.,
5Hz), the robot localization retrieved with amcl is imprecise.
The attached video show that this can lead the traditional
movebase motion planner to fail without fine-tuning of its
parameters when the discrete trained model succeeds without
human intervention.

VI. CONCLUSIONS

We propose a discrete DRL approach based on DDQN
for the mapless motion planning problem for a TurtleBot3
platform, and we compare such approach with state of the art
continuous methods (DDPG and PPO). We extend DDQN
by employing asynchronous parallel training and a multi-
batch Priority Experience Replay. This extension provides

promising results, achieving a success rate of over 95% in
a short time (i.e., 50 minutes). Training times of continuous
DDPG and PPO are significantly longer (i.e., ≈ 4.5 and
≈ 3.5 hours) and the resultant model performed worse than
the discrete one in terms of success rate and path length.
Another key element of our approach is the validation of the
Unity toolkit as a viable alternative to Gazebo.

Our approach has been evaluated both in simulation en-
vironments (Unity and Gazebo) and on the real platform.
Overall our work suggests that the use of a discrete action
space algorithm is a viable alternative to the continuous
ones for mapless navigation tasks, given its performance
and short training times. Moreover, our optimizations have
further speed up the training phase, managing to train a
functional mapless motion planner in less than an hour (when
previous work required several hours of training).

It is also important to notice that previous multi-agent
work [33] required the realization of a simulator from
scratch, given the inefficiency of Gazebo. Unity natively
supports multi-agent environments hence paving the way for
further research targeting multi-agent scenarios.

As future directions, we intend to investigate the ability of
the agent to avoid dynamic obstacles with different veloci-
ties, compare the Unity framework performance to recent
navigation frameworks [34] and explore different tasks to
further investigate the discrete-continuous trade-off.
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