
Enhancing Deep Reinforcement Learning Approaches
for Multi-Robot Navigation via Single-Robot Evolutionary Policy Search

Enrico Marchesini∗, Alessandro Farinelli

Abstract— Recent Multi-Agent Deep Reinforcement Learning
approaches factorize a global action-value to address non-
stationarity and favor cooperation. These methods, however,
hinder exploration by introducing constraints (e.g., additive
value-decomposition) to guarantee the factorization. Our goal
is to enhance exploration and improve sample efficiency of
multi-robot mapless navigation by incorporating a periodical
Evolutionary Policy Search (EPS). In detail, the multi-agent
training ”specializes” the robots’ policies to learn the collision
avoidance skills that are mandatory for the task. Concurrently,
in this work we propose the use of Evolutionary Algorithms to
explore different regions of the policy space in an environment
with only a single robot. The idea is that core navigation
skills, originated by the multi-robot policies using mutation
operators, improve faster in the single-robot EPS. Hence,
policy parameters can be injected into the multi-robot setting
using crossovers, leading to improved performance and sample
efficiency. Experiments in tasks with up to 12 robots confirm
the beneficial transfer of navigation skills from the EPS to
the multi-robot setting, improving the performance of prior
methods.

I. INTRODUCTION

Robotic navigation is a key topic in Deep Reinforcement
Learning (DRL) literature that ranges from indoor mobile
robots [1] to outdoor aquatic platforms [2]. This particular
task has also been extended to the Multi-Agent Deep Rein-
forcement Learning (MARL) domain, due to its wide range
of applicability (e.g., search and rescue [3]).

MARL can be formalized in many different ways as,
for example, the robots (or agents) can be competitive or
cooperative and can optimize an individual or joint reward
[4]. A MARL approach can then be expressed under various
paradigms, such as centralized or independent learning, or
the recently popular Centralized Training with Decentralized
Execution (CTDE) [5]–[9]. The reason behind the successes
of CTDE is because it combines the benefits of previous
paradigms, while naturally addressing their limitation. In
more detail, centralized learning uses a joint observation
(i.e., knowledge of all the robots’ states) to address the non-
stationary nature of multi-agent environments, but hardly
scales in the number of robots. In contrast, independent
learning scales well as it only uses local observations, but
does not foster cooperation nor successfully address non-
stationarity, due to the environment’s changes caused by the
other robots. Hence, CTDE centralizes global information
for the learning process, decentralizing execution as it only
relies on local observations to compute the actions of each

∗Contact author: enrico.marchesini@univr.it
Authors are with the Department of Computer Science, University of

Verona, 37135 Verona, Italy.

Fig. 1. Overview of our Evolutionary Policy Search.

robot. Intuitively, this combines the benefits of centralized
and independent learning, while being scalable, favoring
cooperation, and addressing non-stationarity.

Given the benefits of CTDE, several value-based MARL
approaches have been designed in this direction. In detail,
Value-Decomposition Networks (VDN), QMIX, WQMIX,
and QTRAN [7]–[10] exploit the idea of factoring a global
(or joint) action-value function for the learning process. The
underlying issue is that they limit exploration (hence, they
are limited in finding better navigation behaviors), due to the
constraints (e.g., monotonicity, additivity) used to ensure the
factorization. In contrast, a recent trend exploits the insights
of dueling networks to maintain a separate estimation of
state and advantage values, learning a joint state-value. This
allows to avoid constraints [11], addressing the exploration
problems of prior approaches (further details on these CTDE
approaches are discussed in Section II).

Against this background, we aim at improving exploration
for MARL in the problem of multi-robot mapless naviga-
tion, by analyzing the problem from a different perspective.
Specifically, in this context, a navigation policy can be
decoupled into two (so-called) sub-policies: (i) navigation
skills to reach the target; (ii) collision avoidance behaviors
to avoid other robots. Following relevant literature, both
policies could be learned as a single navigation policy [1],
[12], however we argue that learning the two skills by train-
ing a single policy implicitly hinders sample efficiency and
exploration and the motivation is straightforward. A collision
between robots ends a training epoch because robots should
be returned to a non-collision state (i.e., the environment is
typically reset). However, the robots could have continued to
explore the current path to explore and acquire novel skills
that are useful to learn their end goal of reaching the target.

To this end, we propose an Evolutionary Policy Search
(EPS) that works on top of existing MARL approaches. Our

goal is to bias the current multi-robot policies with basic
navigation skills that can be easily acquired with EPS in
a separate single robot environment. Intuitively, improving
navigation skills in a stationary environment with a single
robot is much simpler than learning them from scratch in a
complex non-stationary environment such as the multi-robot
task (and collisions occur rarely, improving the exploration).

In more detail, we propose the use of an Evolutionary
population that is periodically generated from the robots’
policies using mutation operators to explore different regions
of the policy space. These mutated versions of the policies
are evaluated independently over a set of trials in a single-
robot environment. Hence, we select the individual with
the highest return, which means better navigation behaviors,
and inject its skills into the MARL policies by using a
crossover operator. The beneficial effects of this information
transfer have been highlighted by previous combinations
of Evolutionary Algorithms and gradient-based DRL [13]–
[17]. However, these frameworks were limited to single-
agent scenarios and designed to improve the overall return.
In contrast, EPS facilitates the learning of basic navigation
skills online (i.e., during the MARL training) using our
decoupled formalization, to improve both the performance
and sample efficiency of existing approaches. Our ablation
study in Section IV shows that this improves over the more
intuitive solution of pre-training a single-robot navigation
policy and use it to initialize the policies of the multi-robot
task, similarly to transfer learning [18].

We evaluate EPS on a benchmarking task for multi-agent
(i.e., Cooperative navigation) that is part of the multi-agent
particle envs, a widely used benchmark for DRL methods
[19]. Results confirm that our proposed approach improves
over prior MARL approaches (i.e., independent learners and
GDQ). Hence, we use a TurtleBot31-based environment with
up to 12 robots to show the beneficial effects of EPS in multi-
robot navigation, highlighting its scalability and performance
improvement in increasingly complex scenarios.

II. PRELIMINARIES AND RELATED WORK

We model multi-robot navigation as a Dec-POMDP [20],
referring to prior CTDE works for a more formal definition
[8]. In this section, we first discuss DRL for robotic nav-
igation and prior MARL approaches and then provide the
intuitions behind our CTDE baseline, GDQ [11].

A. Deep Reinforcement Learning for Robotic Navigation

Navigation has served as a strong benchmark in DRL
for robotics [1], [21] due to its practical implications. Re-
cent work [12] showed the benefits of using value-based
DRL in this domain, drastically reducing the computational
complexity while maintaining comparable performance over
policy-gradient (or actor-critic) solutions. Moreover, several
recent work renewed the interest in using value-based DRL
with discrete action spaces, showing that it can handle high-
dimensional domains [22]–[24].

1www.turtlebot.com

B. Centralized Training with Decentralized Execution

Multi-Agent DDPG (MADDPG) [5] has been one of the
first MARL algorithms based on the CTDE, where each
agent trains using centralized information, but it relies only
on the local action-observation history for the decision-
making process. Recently, several research efforts shifted
to value-based MARL [7]–[10] (this is also due to the
insights of the previous section). Such approaches focus on
ensuring the so-called Individual-Global-Max (IGM), which
states that the optimal joint action a := [ai]

n
i=1 (where n

is the number of agents) selected using the global action-
value QG(τττ ,a), must return the same actions that each agent
selects in its decentralized execution. Formally, we can factor
QG(τττ ,a) if and only if exists [Qi : Ti×Ai → R]ni=1 (where
Ti,Ai are the action-observation history space and action
spaces of a single agent, respectively) such that ∀τττ ∈ T :

argmax
a∈An

QG(τττ ,a) =


argmax
a1∈A

Q1(τ1, a1)

...
argmax
an∈A

Qn(τn, an)

 (1)

where τττ is the joint action-observation history, and Qi, τi,
ai are the same functions but for each individual i.

Prior work propose different structural constraints to en-
sure such factorization, e.g., additivity (VDN [7]), and mono-
tonicity (QMIX [8], which have been improved in WQMIX
[10]). However, this limits the representation expressiveness
of the joint action-value [25]. Along this line, QTRAN [9]
relaxes the IGM constraint using a linear soft regularization
and linear constraint, but despite the theoretical guarantees
it results in poor performance [10].

In contrast, our recent solution called Global Dueling Q-
learning (GDQ) [11] avoids using constraints by estimating
a joint state-value VG(v) and exploiting the insights of
the Dueling Architecture [26] (where v := [Vi(τi)]

n
i=1

are the individuals’ state-values). We use GDQ as the
baseline for EPS due to its superior performance over prior
work. Moreover, in Section IV we present an additional
experiment applying EPS to independent learners, to show
its benefits even in non-collaborative architectures.

1) Global Dueling Q-learning: we briefly introduce the
main ideas behind GDQ. From the Dueling Architecture [26],
Q-networks maintain two separate streams to estimate the
two components that form action-values, i.e., the state-value
V (s), and the advantage A(s, a) functions.2 These streams
are then combined in the last network’s layer to obtain the
actual action-value function Q(s, a). In its simplest form,
such aggregation layer computes Q(s, a) = V (s) +A(s, a),
while in practice the following equation is used as it results
in better performance:

2We use a generic notation of state s and action a for our discussion
on the Dueling Architecture.

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
(2)

where |A| is the cardinality of the action space. It follows
that GDQ maintains a separate network that takes as input
the state-values of all the robots and estimates a joint state-
value VG(v). This value replaces the individuals’ state-
values in their target computation. Hence, introducing global
knowledge on the state of the system to all the agents.
Crucially, GDQ ensures the IGM without constraints as
VG(v) does not influence the decision-making process of
an agent, which depends only on the advantage:

argmax
a

Q(s, a) ≡ argmax
a

A(s, a) (3)

We refer to our GDQ paper [11] for further details about
its implementation.

III. EVOLUTIONARY POLICY SEARCH

We propose a novel framework that works on top of prior
MARL algorithms to improve the learning of core navigation
skills (i.e., navigate in a simplified stationary environment)
during the training of the multi-robot task.

The general flow of our Evolutionary Policy Search is
summarized in Algorithm 1. In more detail, the chosen
MARL baseline runs on the multi-robot task following the
algorithm’s specifications (line 2). Periodically, we leverage
Evolutionary Algorithms (EA) [27] and gradient-based mu-
tations [28] to generate a population of mutated versions
of the robots’ policies (lines 3-6). To this end, we sample
a batch b from the memory buffer to compute the per-
weight sensitivity ω of the network’s outputs over its weights
θe (lines 7-8 and more details in the following section).
This is used to generate the population of m individuals P
with weights θP , to which we add a copy of the original
network’s weights (line 9). We evaluate P in a fixed set of
epochs on multiple independent instances of a single-robot
environment. This is used to collect the individuals average
reward that represents our fitness score FP (line 10) that is
then used to select the best set of weights θ∗, i.e., the one
that achieves higher return (line 11):

θ∗ = argmax
θep

FP (4)

Hence, we inject the best behaviors highlighted in the
population in the policies of the multi-robot scenario, using
a mean crossover operator based on Polyak averaging (lines
13-14), which showed better performance in our preliminary
experiments:

θe = αθ∗ + (1− α)θe (5)

where α is a hyper-parameter that controls the amount of
information that is injected from the best individual and the
MARL algorithm. We noticed that high values of α (i.e.,

≥ 0.4) affect the MARL network in a detrimental way, due to
a large amount of information on navigating in the stationary
single-agent environment that is injected. Conversely, when
α < 0.4, we found a beneficial transfer of information with
a significant performance improvement (discussed in Section
IV), which confirms our idea in Section I and the benefits
of EPS.

Algorithm 1 Evolutionary Policy Search
1: Given:

• a running MARL algorithm B e.g., GDQ, IQL
• network with shared weights θe, at epoch e
• periodicity es for the EPS
• scale σ for the baseline Gaussian mutation G

2: During the training of the multi-robot navigation task,
the robots proceed according to the chosen algorithm.

3: if e % es = 0 then
4: E ← n+ 1 instances of single-robot environments
5: P ← m+ 1 copies of θe B each with weights θep
6: Compute G ← N (0, σ) ∀ weight ∈ θep, ∀p ∈ P
7: b← Sample a batch of visited states
8: Compute sensitivity ω as Eq. 6 using b
9: θep ← θep +

G
ω , ∀p ∈ P

10: FP ← Evaluate(P, E)
11: θ∗ ← best navigation policy using FP as Eq. 4
12: end if
13: Combine θe with θ∗ using Eq. 5
14: Continue the MARL training until the next EPS

A. Gradient-based mutations

Perturbing the weights of a DNN via simple Gaussian
noise can lead to disruptive policy changes [28]. Hence, we
use gradient information to design mutations that avoid such
detrimental behaviors, normalizing the Gaussian perturbation
by a per-weight sensitivity ω. We consider Gaussian noise G
as a baseline for the perturbations and normalize it with our
sensitivity ω, which we compute using past visited states in
the memory buffer. We then apply the resultant gradient-
based mutations to the population weights. Formally, we
use the per-weight magnitude of the gradient of the outputs
y = fθe(b) (where b is a randomly sampled batch of past
visited states, and fθe is the function represented by the
network with weights θe), to estimate the sensitivity ω to
that weight with a first-order approximation:

ω =
∑

y

(∑
s∈b abs(∇θefθe(s))

|b|

)
1

|y|
(6)

where each sample of b contributes equally to ω as to reduce
the overall changes to the policy.3 We refer to the original
work on gradient-based mutations [28] for further details.
However, we note that this is the first application of this
operator in a MARL context.

3We use the absolute value of ∇eθf
e
θ (s) as we are interested in the

magnitude (not the sign) of the slope.

B. Limitations of Evolutionary Policy Search

We note that EPS shares a limitation with prior work
[13], [14], requiring a simulator to perform the Evolutionary
search. However, state-of-the-art results in DRL, robotics,
and combined approaches in general, are mainly achieved
using simulation and transferring the policy on real platforms
[29], [30]. Moreover, our formalization of EPS in Algorithm
1 requires weight sharing in the considered MARL baseline.
While this is typically used in MARL [8], [11], we note
that EPS is also compatible with the scenario where each
robot maintains its separate set of weights. In this case, it
is sufficient to instantiate the population P with the copies
of each robot’s set of weights (i.e., the population size
equals the number robots m = n) and compute the sensitivity
separately, using individuals experiences. Finally, given that
EPS works on top of existing algorithms, it is applicable with
any MARL baseline.

IV. EXPERIMENTS

We first investigate the benefits of EPS applied to an
independent learners (IL) algorithm based on a state-of-the-
art value-based algorithm (i.e., Rainbow [31]) and GDQ
[11] that recently showed superior performance over prior
value-based MARL. We refer to these implementations as
EPS-IL, and EPS-GDQ, respectively. Hence, we introduce
the multi-robot navigation environment, where we perform
a more comprehensive evaluation of up to 12 robots to
confirm whether a concurrent exploration of core naviga-
tion behaviors with an evolutionary search can improve the
performance of MARL.

Data are collected on a RTX 2070 and an i7-9700k,
using the same network architectures and hyper-parameters
reported in our prior work [11]. In the navigation tasks,
we include the performance of the original QMIX [8] to
have a more comprehensive overview of the performance of
MARL in multi-robot navigation (note that we considered
QMIX [8] and not WQMIX [10] as we obtained comparable
performance in our preliminary experiments). We do not
consider VDN as it is outperformed by QMIX [8], [11], and
QTRAN as it typically results in poor performance [10].4

Given the importance of the statistical significance of the
evaluation, the following plots and results consider the mean
and standard deviation collected over five independent runs
with different random seeds. This motivates slightly different
results with respect to the original implementations.

For a fair comparison, we include the additional epochs
required by EPS in all the results as this is typical in com-
bined approaches [13]. However, we note that the training
time overhead is negligible due to parallelization (i.e., each
single-robot environment is strictly independent and, in our
experiments, EPS-based approaches trains with an overhead
of ≈ 4± 3% of the considered MARL baseline).

4We use the authors’ original implementations for these baselines.

Fig. 2. Overview of the Cooperative Navigation scenario.

TABLE I
AVG. REWARD AND COLLISION % OF THE TRAINING PHASES FOR IL,

EPS-IL, GDQ, EPS-GDQ.

Avg. Reward Avg. Collision (%)

IL -2.42 ±0.32 29.2 ±2.5
EPS-IL -2.16 ±0.25 25.1 ±2.6

GDQ -2.12 ±0.24 18.2 ±1.5
EPS-GDQ -1.95 ±0.19 16.3 ±1.7

A. Benchmark Example

We consider Cooperative navigation of the multiagent
particle envs tasks [19] as a preliminary benchmark to con-
firm the benefits of EPS. Figure 2 depicts this environment,
where 3 agents have to learn how to navigate and cover
the landmarks. They receive a positive reward based on how
far each agent is from each landmark and a penalty upon
collisions.

Results in Table I shows the average reward and percent-
age of collisions of IL, EPS-IL, GDQ, EPS-GDQ considering
the entire training phase (which lasted ≈100 minutes for all
the approaches). These preliminary experiments confirm the
idea behind EPS, where searching concurrently for better
core navigation behaviors leads to better performance (i.e.,
higher reward and fewer collisions).

B. Multi-Robot Navigation

For our robotic navigation experiments, we use a similar
setup to prior DRL and MARL navigation work [11], [12].

In detail, our multi-robot task models a Turtlebot3 indoor
navigation environment with up to 12 robots (our experi-
ments employ n = {2, 4, 8, 12} robots), where each robot has
to navigate to its target and avoid collisions. The targets are
randomly generated in the environment at each epoch, and
are guaranteed to be obstacle-free (i.e., they do not spawn
on the initial positions of the robots) and separate from each
other by at least 0.5m.

Following the Turtlebot3 specifications, we use an angular
velocity of max 90 deg/s and a linear velocity of max = 0.2
m/s. In every experiment, the decision-making frequency of
the robot is 20Hz, to reflect the update rate of the LDS-01
lidar sensor. We use the same specifications for the single-
robot environments of EPS. The only other difference in the
latter environment is the presence of static obstacles, intro-
duced to maintain key obstacle avoidance behaviors present

Fig. 3. Left: Single-robot environment for EPS. Obstacles and walls are
depicted in blue, while the robot and its target are red. Right: Multi-robot
environment for MARL, where each robot-target couple is depicted with a
different color.

in the MARL policy. These two environments, depicted in
Figure 3 are built with the Unity ml-agents toolkit [32] for
three reasons: (i) it has a native Robot Operating System
(ROS) interface to deploy the trained models onto the real
robots; (ii) it allows to speed up the simulation; (iii) it is
straightforward to parallelize the evaluation of EPS treating
each single-robot environment independently.

Each robot receives a reward signal r at each time step t:

r =


−1, upon collision
(dt−1 − dt)− 0.005, if dt > 0.1

1, if dt <= 0.1

(7)

i.e., two sparse values if it reaches the target within distance
dt = 0.1m, or colliding with other robots (or the walls),
and a dense value when navigating, where dt−1, dt is the
euclidean distance between the robot and its goal at two
consecutive time steps.

1) Network Architecture: We use a 30-dimensional vector
with laser scan values sampled in a uniform distribution
between [−120, 120] degrees and the robots’ target position
(defined as the distance from the robot, and the relative
heading) as input for the network. The output layer
considers the combinatorial space between discrete linear
velocities ∈ [0.0, 0.7, 0.14, 0.21] m/s and angular velocities
∈ [−90,−45, 0, 45, 90] deg/s; this is consistent with prior
work [11], [12]. We used the same network’s size of our
GDQ, to which we refer for further details [11].

2) Empirical Evaluation: Following our preliminary ex-
periments on the Cooperative Navigation domain, here we
only consider the best-performing algorithms (i.e., GDQ,
EPS-GDQ), and QMIX to provide a more comprehensive
overview of MARL in multi-robot navigation. Our goal is
to investigate whether EPS favors the learning of core navi-
gation skills during MARL training, improving performance
and sample-efficiency of the combined approach.

For each experiment with n = {2, 4, 8, 12} robots, we plot
the following curves that report mean and standard deviation

over the multiple runs, smoothed over 100 epochs. In more
detail, we plot the average reward as the main evaluation
metric, which gives a clear indication of the navigation
performance. We also discuss the relative success rate that
indicates how many successful collision-free trajectories (i.e.,
we consider a success when all the robots in the environment
reach their target) are performed over 100 epochs.

Figure 4 shows the results of IL, QMIX, GDQ, and EPS-
GDQ in the navigation tasks with a growing number of
robots, where the goal is to learn how to reach different
target positions while avoiding collisions with the walls and
with each other.

We note that results are comparable when considering
2 robots, while the benefits of EPS become evident with
a growing number of robots. In more detail, with n = 4
EPS-GDQ stabilizes at ≈35 average reward (i.e., ≈ 90%) in
≈100000 steps. The standard GDQ and QMIX, in contrast,
reach ≈88% and ≈90% successes in 175000 and 110000
steps, respectively. The performance improvement of EPS-
GDQ is evident with n = {8, 12} robots, where QMIX does
not learn how to factorize the global action-value in so few
interactions with the environment, whereas EPS offer a clear
performance advantage over GDQ, especially in the initial
phases of the training where core navigation behaviors are
learned faster.

3) Generalization to an Unseen Scenario: The policies
trained with MARL for our multi-robot task can navigate in
the environment in a decentralized fashion, exploiting only
the local information discussed in the previous sections. To
test whether our models generalize over crucial aspects of
robotic navigation (e.g., starting and target positions and ve-
locities), given the laser scan-based observations, we perform

Fig. 4. Average reward for IL, QMIX, GDQ, and EPS-GDQ in our multi-
robot navigation scenarios with n = {2, 4, 8, 12} robots.

Fig. 5. Overview of the previously unseen scenario.

TABLE II
AVG. REWARD AND COLLISIONS % FOR QMIX, GDQ, EPS-GDQ IN

THE EVALUATION IN A PREVIOUSLY UNSEEN SCENARIO.

Avg. Reward Collision (%)

QMIX 26.3 ±3.1 1.4 ±2.6
GDQ 30.1 ±2.7 0.8 ±1.8
EPS-GDQ 32.4 ±2.5 0.9 ±1.0

an additional experiment with 4 robots in a previously unseen
scenario. This testing environment is depicted in Figure 5,
where each color characterizes an agent and its target.5 For
a fair evaluation, we selected a sequence of targets that were
reachable by all the models. Results in Table II confirm
the trend highlighted during the training, where EPS-GDQ
outperforms the baseline in terms of average reward. We
also measured the percentage of collisions detected, further
confirming the performance improvement obtained with our
evolutionary search, which returns comparable collisions
over GDQ, but with a higher reward.

C. Ablation Study

To further confirm our idea that EPS improves exploration
and sample efficiency of prior algorithms, we performed an
additional ablation study in the scenario with 4 robots. In de-
tail, we initially train a navigation policy in the single-robot
scenario (pre-training). Hence, we initialize the network’s
weights of GDQ with the resultant set of weights of the pre-
training (which we refer to as Pre-GDQ), in a similar fashion
to transfer learning. Our goal is to verify whether the EPS
periodical search offers improved performance over the more
intuitive solution of Pre-GDQ.

We performed three experiments with different initializa-
tion at different stages of the pre-training (i.e., at around
50, 75, and 95% of success rate for the single-robot pre
training, which corresponds to ≈ 12, 20, 30 average reward,
respectively). Figure 6 shows the average reward over differ-
ent runs for Pre-GDQ initialized at ≈75% successes, while
Table III shows the performance of our trials with different

5We consider 4 robots due to the good performance of the models
trained with the MARL baselines.

Fig. 6. Avg. reward for the single-agent pre training (left) and Pre-GDQ
(right) initialized with a single-robot policy that reached ≈20 avg. reward.
Pre-GDQ reaches ≈30 avg. reward in around 210000 steps.

TABLE III
AVERAGE RESULTS WITH DIFFERENT PRE TRAINING FOR GDQ.
EPS-GDQ OUTPERFORM PRE-GDQ IN ANY INIZIALITATION,

ACHIEVING ≈35 AVG. REWARD IN ≈100000 STEPS

Pre Training Pre-GDQ EPS-GDQ

Steps Reward Steps Reward Steps Reward

75 12 200 25
100 35110 20 210 30

170 30 280 34

initializations (where we indicate the steps in thousands).
Crucially, every experiment confirms our intuition behind
EPS as our EPS-GDQ achieves ≈35 average reward in
100000 steps (i.e., approximately two times fewer steps than
the best performing Pre-GDQ).

V. DISCUSSION

We presented EPS, a novel approach for multi-robot navi-
gation that works on top of existing algorithms, maintaining
their CTDE fashion. The idea is to perform a periodical
evolutionary search to find better core navigation behaviors
to inject into the MARL training. Our preliminary evalua-
tion in Cooperative Navigation highlighted the performance
improvement when using EPS with prior MARL algorithms
(i.e., IL, GDQ). Hence, we evaluated our framework in a
multi-robot robotic navigation scenario with up to 12 robots.
This empirical evaluation shows that EPS-GDQ significantly
improves the performance of prior MARL approaches, es-
pecially with a growing number of robots. This work paves
the way for several research directions as the application
of EAs to multi-agent scenarios is a novel way to foster
desired behaviors into the training loop, possibly enabling
the exploration of safer behaviors to address Safe MARL.
Another interesting direction follows the recent trend of
using Formal Verification [33], [34] to quantify and foster
safety behaviors of the agents, which we believe is a crucial
aspect in complex multi-agent tasks.

REFERENCES

[1] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real drl: Continuous control
of mobile robots for mapless navigation,” in IROS, 2017.

[2] E. Marchesini, D. Corsi, and A. Farinelli, “Benchmarking aquatic
navigation using deep reinforcement learning and formal verification,”
in IROS, 2021.

[3] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman, “Multi-
robot search and rescue: A potential field based approach,” in Au-
tonomous Robots and Agents, 2007.

[4] K. Tuyls and G. Weiss, “Multiagent learning: Basics, challenges, and
prospects,” in AI Magazine, 2012.

[5] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in NIPS, 2017.

[6] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI, 2018.

[7] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-
agent learning,” in AAMAS, 2018.

[8] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. N. Foerster,
and S. Whiteson, “QMIX: monotonic value function factorisation for
deep multi-agent reinforcement learning,” in ICML, 2018.

[9] K. Son, D. Kim, W. J. Kang, D. Hostallero, and Y. Yi, “QTRAN:
learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in ICML, 2019.

[10] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted qmix:
Expanding monotonic value function factorisation for deep multi-agent
reinforcement learning,” in NeurIPS, 2020.

[11] E. Marchesini and A. Farinelli, “Centralizing state values in dueling
architectures for multi-agent reinforcement learning navigation,” in
IROS, 2021.

[12] ——, “Discrete deep reinforcement learning for mapless navigation,”
in ICRA, 2020.

[13] S. Khadka and K. Tumer, “Evolution-guided policy gradient in rein-
forcement learning,” in NeurIPS, 2018.

[14] S. Pourchot, “CEM-RL: Combining evolutionary and gradient-based
methods for policy search,” in ICLR, 2019.

[15] E. Marchesini and A. Farinelli, “Genetic deep reinforcement learning
for mapless navigation,” in AAMAS, 2020.

[16] E. Marchesini, D. Corsi, and A. Farinelli, “Genetic soft updates for
policy evolution in deep reinforcement learning,” in ICLR, 2021.

[17] ——, “Exploring safer behaviors for deep reinforcement learning,” in
AAAI, 2022.

[18] “Learning for a robot: Deep reinforcement learning, imitation learning,
transfer learning,” Sensors, 2021.

[19] I. Mordatch and P. Abbeel, “Emergence of grounded compositional
language in multi-agent populations,” in arXiv, 2017.

[20] F. A. Oliehoek and C. Amato, “A concise introduction to decentralized
pomdps,” in SpringerBriefs in Intellingece Systems, 2016.

[21] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in IROS, 2017.

[22] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architec-
tures for deep reinforcement learning,” in AAAI, 2018.

[23] T. Wiele, D. Warde-Farley, A. Mnih, and V. Mnih, “Q-learning in
enormous action spaces via amortized approximate maximization,” in
NeurIPS Workshop, 2018.

[24] G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin, “Reinforce-
ment learning in large discrete action spaces,” in CoRR, 2015.

[25] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “MAVEN:
multi-agent variational exploration,” in NeuIPS, 2019.

[26] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architec-
tures for deep reinforcement learning,” in ICML, 2016.

[27] D. Fogel, “Toward a new philosophy of machine intelligence,” in
Evolutionary computation 3. ed., 2006.

[28] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, “Safe mutations
for deep and recurrent neural networks through output gradients,” in
GECCO, 2018.

[29] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer
in deep reinforcement learning for robotics: a survey,” in IEEE
Symposium Series on Computational Intelligence, 2020.

[30] Z. Ding, N. F. Lepora, and E. Johns, “Sim-to-real transfer for optical
tactile sensing,” in ICRA, 2020.

[31] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in drl,” in AAAI, 2018.

[32] A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A platform for intelligent agents,” in CoRR, 2018.

[33] D. Corsi, E. Marchesini, and A. Farinelli, “Formal verification of neu-
ral networks for safety-critical tasks in deep reinforcement learning,”
in UAI, 2021.

[34] D. Corsi, E. Marchesini, A. Farinelli, and P. Fiorini, “Formal verifi-
cation for safe deep reinforcement learning in trajectory generation,”
in IRC, 2020.

